Rapid and reversible generation of a microscale pH gradient using surface electric fields.

نویسندگان

  • Erin L May
  • Andrew C Hillier
چکیده

We report a method for the rapid and reversible generation of microscale pH gradients using a spatially varied electric field. A linear gradient in electrochemical potential is produced on an electrode surface consisting of a platinum catalyst layer on indium-tin oxide-coated glass by the application of two different potential values at spatially distinct surface locations. The resulting potential gradient drives the oxidation and reduction of water at different rates along the surface, as dictated by the local applied potential. A nonuniform distribution of pH in the neighboring solution results due to the variation in surface reaction rates. The extent and magnitude of the pH gradient can be controlled by the appropriate selection of applied potential values. In addition, the gradient can be rapidly turned on or off and reversibly switched between various profiles. The size of the pH gradient can be readily modified by changing the dimensions of the electrode and contact pads to allow integration into chip-scale devices. Characteristics of the pH gradient are described, including experimental and theoretical evidence of significant improvement in time response over competing methods for the generation of microscale pH gradients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focusing of mammalian cells under an ultrahigh pH gradient created by unidirectional electropulsation in a confined microchamber† †Electronic supplementary information (ESI) available: Figures S1–S5 and videos S1–S2. See DOI: 10.1039/c4sc00319e Click here for additional data file. Click here for additional data file. Click here for additional data file.

The transport and manipulation of cells in microfluidic structures are often critically required in cellular analysis. Cells typically make consistent movement in a dc electric field in a single direction, due to their electrophoretic mobility or electroosmotic flow or the combination of the two. Here we demonstrate that mammalian cells focus to the middle of a closed microfluidic chamber under...

متن کامل

Harnessing Electric Fields for Microfluidics – From Lightning Sparks to Tiny Tornadoes

The dominance of surface tension and viscous effects over body forces such as inertia, gravity or centrifugal force makes fluid actuation and particle manipulation at microscale dimensions extremely difficult. We demonstrate the possibility of exploiting electric fields to drive unstable turbulent-like flows for micromixing and complex flows for efficient particle separation and concentration. ...

متن کامل

Vibration Analysis of Magneto-Electro-Elastic Timoshenko Micro Beam Using Surface Stress Effect and Modified Strain Gradient Theory under Moving Nano-Particle

In this article, the free vibration analysis of magneto-electro-elastic (MEE) Timoshenko micro beam model based on surface stress effect and modified strain gradient theory (MSGT) under moving nano-particle is presented. The governing equations of motion using Hamilton’s principle are derived and these equations are solved using differential quadrature method (DQM). The effects of dimensionless...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

Casson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation

The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 77 19  شماره 

صفحات  -

تاریخ انتشار 2005